Search results for "Arginine vasopressin receptor 2"
showing 6 items of 6 documents
V2-receptor–mediated relaxation of human renal arteries in response to desmopressin
1999
The effects of deamino-8-D-arginine vasopressin (desmopressin), a V2 receptor antidiuretic agonist, were studied in isolated rings from branches of renal arteries obtained from 22 patients undergoing nephrectomy. The rings were suspended in organ bath chambers for isometric recording of tension. In precontracted rings with norepinephrine (10(-6) to 3 x 10(-6) mol/L), desmopressin (10(-11) to 3 x 10(-7) mol/L) caused endothelium-dependent relaxation (81%+/-4% reversal of the initial contraction in arteries with endothelium; 20%+/-4% in arteries without endothelium; P < .05). The relaxation to desmopressin in rings with endothelium was reduced significantly by indomethacin (10(-6) mol/L) and …
A female with X‐linked Nephrogenic diabetes insipidus in a family with inherited central diabetes Insipidus: Case report and review of the literature
2020
There are two forms of diabetes insipidus, central (neurohypophyseal), and nephrogenic, caused by pathogenic variants in the AVP gene and the AVPR2 or AQP2 genes, respectively. We report on a four-generation family, seven individuals had central diabetes insipidus (CDI) and the female index patient seen from age 16 to 26 years had (mild) nephrogenic diabetes insipidus. In her father with CDI, a known pathogenic heterozygous AVP variant c.232_234del p.(Glu78del) was identified, confirming the diagnosis of CDI in him and the other affected family members. In the proband, molecular analysis disclosed a novel heterozygous AVPR2 gene variant, c.962A > T p.(Asn321Ile) and an extremely skewed X-in…
Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin.
1994
1. The effects of vasopressin and deamino-8-D-arginine vasopressin (DDAVP, desmopressin) were studied in artery rings (0.8-1 mm in external diameter) obtained from portions of human omentum during the course of abdominal operations (27 patients). 2. In arterial rings under resting tension, vasopressin produced concentration-dependent, endothelium-independent contractions with an EC50 of 0.59 +/- 0.12 nM. The V1 antagonist d(CH2)5Tyr(Me)AVP (1 microM) and the mixed V1-V2 antagonist desGly-d(CH2)5D-Tyr(Et)ValAVP (0.01 microM) displaced the control curve to vasopressin to the right in a parallel manner without differences in the maximal responses. In the presence of indomethacin (1 microM) the…
Structural requirements for V2 vasopressin receptor proteolytic cleavage.
1999
The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxyto…
Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus.
2000
Vasopressin V2 receptor mutants from three different patients with congenital nephrogenic diabetes insipidus phenotypes were investigated after expression in COS cells. The amino acid exchanges within the human V2 receptor are located in the second extracellular loop (T204N, Y205C and V206D). Confocal microscopy showed that all receptor mutants were strongly expressed but mainly located within the cell. Residual binding capacity for the antidiuretic hormone arginine vasopressin (AVP) could only be detected for the T204N mutant and was 10-fold lower than for the wild-type receptor. Stimulation of transfected cells with 1 microM AVP showed that the T204N mutant was able to activate the adenyl…
2015
Several point mutations have been identified in human aquaporins, but their effects on the function of the respective aquaporins are mostly enigmatic. We analyzed the impact of the aquaporin 2 mutation V71M, which causes nephrogenic diabetes insipidus in humans, on aquaporin structure and activity, using the bacterial aquaglyceroporin GlpF as a model. Importantly, the sequence and structure around the V71M mutation is highly conserved between aquaporin 2 and GlpF. The V71M mutation neither impairs substrate flux nor oligomerization of the aquaglyceroporin. Therefore, the human aquaporin 2 mutant V71M is most likely active, but cellular trafficking is probably impaired.